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The spreading, imbibition and solidification of a hot two-dimensional droplet on a
cooler porous substrate is studied. Lubrication theory and asymptotic reduction are
used to derive a coupled system of evolution equations for the droplet thickness
and vertical extents of the solid/melt boundary and the saturation front within the
porous medium. This medium is assumed to be a membrane composed of an array
of pores having fixed width. A precursor layer model and a disjoining pressure
are used to relieve the singularity at the contact line. When the solidification and
imbibition time scales are similar to those associated with spreading, the dynamics
follow two stages: spreading and imbibition accompanied by solidification within the
pores leading to their blockage, followed by contact line arrest and basal solidification
of the droplet; the possibility of crust formation at the gas–melt interface is excluded
from the present study. The dependence of the dynamics on the relevant system
parameters is elucidated. Furthermore, our modelling predictions compare favourably
with experimental data also obtained as part of the present work.

1. Introduction
The dynamics of droplet spreading on the surface of solid substrates is central

to numerous applications and has therefore received considerable attention in the
literature over the past four decades (see the review by Oron, Davis & Bankoff 1997
and references therein). On relatively high-energy surfaces, a liquid droplet is driven
to spread by capillarity and gravity over ultra-thin precursor layers, which form
rapidly ahead of the droplet. On relatively low-energy surfaces, on the other hand,
a droplet assumes a static shape, characterized by a finite contact angle. In the case
of dynamic spreading, the apparent or macroscopic contact angle is dependent on
the flow characteristics, the properties of the liquid and the underlying solid. At the
contact line, the no-slip condition implies that infinite stress is required in order to
bring about droplet spreading; this is the so-called contact line ‘singularity’, which
has been the subject of many studies (Oron et al. 1997).

Although droplet spreading over impermeable substrates has been much studied,
that over permeable solids has received less attention. This is surprising since this
problem is of interest for systems involving spreading over textiles, spray-painting,
inkjet-printing on paper, particle agglomeration and spreading of gravity currents over

† Author to whom correspondence should be addressed: o.matar@imperial.ac.uk
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porous solids (Washburn 1921; Davis & Hocking (1999, 2000); Aradian, Raphael &
de Gennes 2000; Acton, Huppert & Worster 2001; Clarke et al. 2002; Holman 2002;
Starov et al. 2002a–c; Alleborn & Raszillier 2004; Warren 2004). Denesuk et al. (1993)
studied the dewetting and capillary-driven penetration of small droplets into porous
substrates consisting of an array of parallel cylinders of constant radius using the
Washburn equation. Work related to paper coating was also carried out using simple
models for liquid penetration into the porous medium (Sunderhauf, Raszillier &
Durst 1999). Davis & Hocking (1999, 2000) used lubrication theory to examine
the spreading of two-dimensional droplets over porous media composed of arrays of
vertical pores of constant width and finite length. Their asymptotic and brief numerical
investigations yielded valuable information regarding the behaviour near the contact
line, the time scales of the dynamics in various situations and their dependence
on system parameters. Clarke et al. (2002) and Starov (2002a–c) also studied the
spreading and imbibition problem in connection with coating and ink-jet printing,
while Holman et al. (2002) considered this system in connection with fabrication of
ceramic components on a micrometre-scale using ink-jet printing technology. Clarke
et al. (2002) and Holman et al. (2002) both observe that the droplet rapidly assumes a
spherical cap shape under the action of capillarity following its release and subsequent
impact on the substrate. In order to evolve the location of the contact line, Holman
et al. (2002) used an empirical power-law model, akin to Tanner’s law (Tanner 1979)
while Clarke et al. (2002) related the radial rate of advance of the contact line to
the dynamic contact angle using molecular-kinetic theory; imbibition into the porous
medium was modelled using the Washburn equation. Alleborn & Raszillier (2004)
used lubrication theory to study the spreading of axisymmetric droplets on porous
substrates by adopting a precursor layer model; Darcy’s law is used to model the
imbibition process, which is characterized by a front separating the saturated from the
unsaturated regions of the porous medium. These authors also examine complicated
three-dimensional spreading and imbibition situations.

The studies reviewed thus far have all involved isothermal spreading. Interesting
situations arise, however, in cases where the spreading of solidifying melts occurs and
non-isothermal effects and phase-changes take place. Flows involving phase changes
are complicated by the presence of an additional free surface, which represents the
boundary between the solidified and melt phases. These systems are of interest in a
variety of situations involving geophysical flows, for instance, such as gravity currents
and lava flows (Bercovici & Lin 1996; Simpson 1997; Balmforth & Craster 2000;
Griffiths 2000; Balmforth, Craster & Sassi 2004), ice sheets and accretion (Baral,
Hutter & Greve 2001; Myers, Charpin & Chapman 2002), the cooling of core melts
inside a nuclear reactor (Bunk 1999) and crystallization as well as agglomeration
(see Anderson, Worster & Davis 1996 and references therein). Several studies have
attempted to model the dynamics of non-isothermal spreading in the absence of
solidification but with substantial changes in the viscosity (Sakimoto & Zuber 1995;
Bercovici & Lin 1996; Balmforth & Craster 2000; King, Riley & Sansom 2000), and
with solidification (Bunk 1999; Bunk & King 2003). To the authors’ best knowledge,
however, no studies are available that have examined droplet spreading and imbibition
on a porous medium with solidification. This problem represents the focus of this
work.

The problem treated in this paper has been motivated by the industrial process
of coating, which, among other applications, is the final step in the manufacture of
most pharmaceutical tablets intended for oral administration. Tablets are coated for
several reasons: for taste masking in order to isolate the often unpleasant taste of
active pharmaceutical ingredients (APIs), for mechanical protection to prevent tablet
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attrition and edge chipping during manipulation and transport, and finally to reduce
atmospheric moisture absorption by hygroscopic ingredients that may be present in
the tablet (Teunou & Poncelet 2002). The coating process involves the spraying of
fine droplets of a polymer melt or solution onto the surface of the tablets. In order
to create a coating layer on the surface rather than saturate the internal pore space
of the tablet, the droplets must solidify before being completely drawn by capillary
forces into the tablet. On the other hand, the solidification must not be too fast,
otherwise the coating layer would be rough and too much material would have to
be used for a complete coverage of the tablet surface. It is therefore important to
understand the effect of three simultaneously occurring physical phenomena: droplet
spreading, imbibition, and solidification, on the dynamics of the coating process and
the resulting morphology of the solidified droplet.

In the present paper, we investigate the spreading and imbibition dynamics of hot
two-dimensional droplets on a cooler porous medium, whose temperature is lower
than the melting point of the droplet. This, then, leads to solidification of the melt
within the pores ultimately leading to their blockage, and brings about the end of
the spreading and penetration stage of the dynamics. In the second stage, the droplet
undergoes basal solidification. Lubrication theory is used to derive a model consisting
of three evolution equations for the droplet thickness, penetration depth as well as the
height of the solid/melt front; the latter was obtained following the solution of the
temperature field within the solid and fluid phases in the drop. These equations are
parameterized by appropriate dimensionless groups reflecting the relative importance
of the relevant hydrodynamic and heat transfer mechanisms. Note that we shall
follow the work of Schwartz & Eley (1998) and Alleborn & Raszillier (2004) and
relieve the contact line singularity at the edge of the drop by using a precursor layer
and a disjoining pressure model. Experimental studies are also conducted in order to
validate the predictions of the model. A parametric study is presented in which the
dependence of the dynamics on the relevant parameters is elucidated and numerical
solutions are also compared with experimental data yielding favourable agreement.

The rest of this paper is organized as follows. In § 2, we present our experimental
results, while in § 3, a presentation of the problem formulation is provided, which
contains details of the different scalings adopted within the medium and drop regions
and of the derivation of the evolution equations. Section 4 is dedicated to the
discussion of the numerical results and in § 5 we provide comparisons between
theory and experiment and discuss model limitations. Finally, concluding remarks are
provided in § 6.

2. Experimental
In this section, we present the results of our experimental investigation of the

spreading, imbibition and solidification of droplets on porous media. We begin by
describing the experimental set-up and procedure used to carry out the study. The
experimental results are then discussed.

2.1. Materials and methods

The spreading, penetration and solidification dynamics of polyethylene glycol
(PEG) melts on porous tablets made of anhydrous sodium carbonate were studied
experimentally. These materials have been selected for the following reasons: sodium
carbonate is a typical example of a filler material used in tablet formulations, and
PEGs are edible water-soluble polymers often used as binders in tableting and
granulation, providing a range of melting points and melt viscosities, depending on
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Figure 1. Schematic representation of the apparatus used for the experimental measurement
of the droplet spreading dynamics.

the chosen PEG molecular weight. (Note that although PEGs exhibit slight differences
between their melting and solidification points owing to hysteresis, these differences
will be considered negligible below.) Tablets were compressed at 3 Mt in a 13 mm die
from particle size fraction of 125–150 µm which was obtained by sieving. The mass
of all tablets was kept constant at 1.0 g. In order to realize systems with different
viscosity, polyethylene glycols of two different molecular weights – PEG1500 and
PEG4000 – have been used. Their melting points and melt viscosities are Tm = 45 ◦C
and µ = 0.188 Pa s for PEG1500, and Tm = 62 ◦C, and µ = 0.415 Pa s for PEG4000,
respectively.

A commercially available instrument DSA-10 (Kruss GmbH) was used for
recording the droplet spreading dynamics; a schematic drawing of the instrument
set-up is shown in figure 1. The substrate (tablet) was placed onto a controlled-
temperature stage and a droplet of PEG melt was deposited on the tablet from a
heated syringe. The profile of the spreading droplet was recorded at a high frame rate
(typically 60 f.p.s.) by a digital camera connected to a PC with a frame-grabber card.
The temporal evolution of the droplet base diameter, height and dynamic contact
angle were obtained by automatic image analysis of the recorded spreading sequences.
The ‘spherical cap’ method was found to be the most appropriate for approximating
the droplet shape. The final distribution of solidified PEG within the tablet was
also analysed. The tablets were carefully fractured in such a way that the fracture
bisects the droplet. In order to increase contrast between the penetrated PEG and
the original tablet material, the fractured face was coloured using a water-based ink,
which preferentially coloured the sodium carbonate substrate. A digital image of the
fractured tablet was then recorded.

2.2. Discussion of results

Droplet spreading sequences and the final distribution of solidified PEG1500 in the
tablet are shown in figures 2, 3 and 4 for three qualitatively different situations
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Figure 2. Evolution of droplet shape for PEG1500 melt on a sodium carbonate tablet when
no solidification occurs during spreading (a–e); the substrate and droplet temperatures are
45.5 ◦C and 47 ◦C, respectively. ( f ) An image of the fractured substrate revealing the final
distribution of PEG within the tablet.

representing the cases of no solidification during spreading (figure 2), simultaneous
solidification and spreading (figure 3), and almost instantaneous solidification in pores
(figure 4). The substrate was given an artificial colour in the figures in order to make
it easier to distinguish the droplet profile from the baseline during the latter stages of
the spreading (in the original images the substrate was black).

The no-solidification case (figure 2) was realized by heating the tablet above the
melting point of PEG1500. The sequence shows the phenomenon of spreading to
a maximum diameter and then retraction of the contact line owing to continuing
penetration of the droplet into the substrate. The maximum base diameter is given by
the diameter of the penetrated PEG apparent in figure 2( f ). In the intermediate case
(figure 3), the diameter of the residual solidified droplet is less than the maximum base
diameter, and there is a characteristic plateau of constant penetration depth, which is
due to solidification-induced pore-blocking. The rapid solidification case (figure 4) was
realized by maintaining the tablet below the melting point of PEG1500. Nevertheless,
some penetration still occurred owing to local heating-up of the substrate by the
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Figure 3. Evolution of droplet shape for PEG1500 melt on a sodium carbonate tablet in the
case of simultaneous solidification and spreading (a–e); the substrate and droplet temperatures
are 40 ◦C and 47 ◦C, respectively. ( f ) An image of the fractured substrate revealing the final
distribution of PEG within the tablet.

drop, as can be seen in figure 4( f ). The level of penetration in this case, however,
was substantially lower than that achieved in the cases of no-solidification and
simultaneous solidification and penetration (see figures 2f and 3f ).

We have also investigated experimentally the effect of system parameters on the
spreading dynamics. The dependence of the droplet base diameter and the dynamic
contact angle on time for PEG1500 and several combinations of substrate and droplet
temperatures are plotted in figure 5. To make individual experiments comparable,
the base diameter is shown in a dimensionless form, i.e. it is always scaled by the
initial base diameter. Curves 1 and 2 in figure 5 correspond to the rapid solidification
situation: the contact line is frozen at a certain maximum base diameter, which is
somewhat lower for colder substrates (curve 1). Also, the apparent contact angle of
the frozen droplet is larger when solidification is faster (curve 1). Curve 3 represents
a case with partial solidification, while curves 4 and 5 are for no solidification (the
substrate temperature is above the melting point.) The fact that the maximum base
diameter is highest in case 5 can be explained by its lowest viscosity. We can also
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Figure 4. Evolution of droplet shape for PEG1500 melt on a sodium carbonate tablet in the
limiting case of fast solidification (a–e); the substrate and droplet temperatures are 30 ◦C and
47 ◦C, respectively. (f ) An image of the fractured substrate revealing the final distribution of
PEG within the tablet.

see that the degree to which the contact line retracted is lowest in that case because
the droplet has completely penetrated into the substrate faster than in cases 3 and 4,
presumably owing to the lower viscosity in case 5.

A comparison between the droplet spreading and solidification dynamics for
PEG1500 and PEG4000 for several combinations of substrate and droplet temp-
eratures is shown in figure 6. Curve 1 is the rapid solidification case for PEG1500
which has already been discussed; attention will therefore be focused on the curves
labelled ‘2’–‘5’ in figure 6(a). The curves labelled ‘2’ in figure 6 demonstrate the absence
of solidification since Ts > Tm in this case; moreover, the spreading rate appears to
be faster than in case 1 owing to the decreased viscosity in 2 (since Td = 50 ◦C and
60 ◦C in cases 1 and 2, respectively). For the same reasons, the spreading rate in case
3 exceeds that in cases 1 and 2. Curves 4 and 5, which are for the higher-viscosity
PEG4000, clearly show slower spreading dynamics during the initial stages of the
spreading process. The substrate temperature in case 4, Ts = 60 ◦C, is slightly below
the melting point of PEG4000, Tm = 62 ◦C, which indicates that solidification is
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Figure 5. The effect of temperature on PEG1500 droplet spreading and solidification
dynamics: (a) droplet base diameter, (b) dynamic contact angle. The substrate and initial
droplet temperatures are: curve 1: Ts = 30 ◦C, Td = 50 ◦C; curve 2: Ts = 40 ◦C, Td = 50 ◦C;
curve 3: Ts = 40 ◦C, Td = 60 ◦C; curve 4: Ts = 50 ◦C, Td = 60 ◦C; curve 5: Ts = 50 ◦C,
Td = 70 ◦C.

indeed possible in this case. In case 5, Ts > Tm, thus no solidification will occur, but
Td is lower than that in case 4 which implies that the viscosity in this case is larger.
However, the highest maximum base diameter is attained by PEG4000 (curve 5),
which may be due to the slower penetration rate, and therefore larger liquid volume
available for spreading. This hypothesis is also supported by the fact that the contact
line retraction rate (the slope of the base diameter vs. time curves in the final phase)
is much slower for PEG4000 (curves 4 and 5) than for the lower viscosity PEG1500.

The case of PEG considered so far represents a system where the density of the
solid and melt are practically equal (that is, there is no change in volume upon
solidification). In order to realize a situation where a substantial change in volume
does occur, the solidification of water droplets on a cold impermeable substrate was
studied. A sequence of droplet shape evolution profiles for a water droplet of initial
temperature Td = 25 ◦C on an impermeable substrate of temperature Ts = −20 ◦C
is shown in figure 7. This case is characterized by large Stefan numbers due to the
relatively small magnitude of the viscosity of water. Close inspection of figure 7
reveals that the formation of a cusp-like feature near the apex of the solidifying
droplet becomes apparent at the latter stages of the dynamics (figure 7e, f ). This
is very similar to the shapes of solidified droplets in the work of Anderson et al.
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Figure 6. The effect of viscosity and temperature on droplet spreading and solidification
dynamics: (a) droplet base diameter, (b) dynamic contact angle. The conditions are: curve 1:
Ts = 40 ◦C, Td =50 ◦C, PEG1500; curve 2: Ts = 50 ◦C, Td = 60 ◦C, PEG1500; curve 3: Ts = 50 ◦C,
Td = 70 ◦C, PEG1500; curve 4: Ts = 60 ◦C, Td =80 ◦C, PEG4000; curve 5: Ts = 70 ◦C, Td = 65 ◦C,
PEG4000.

(1996) and will be compared to our modelling predictions in § 5 below. The model
formulation is presented next.

3. Problem formulation
3.1. Preliminary considerations

We consider the spreading dynamics of a drop of Newtonian and incompressible
fluid, of viscosity µ, density ρ, thermal conductivity λ, and specific heat capacity
Cp , on a porous medium. The drop has characteristic height and length scales h0

and a0, respectively; the aspect ratio of the drop, ε ≡ h0/a0, will be taken to be
sufficiently small so as to permit the use of lubrication theory. The dynamics of
the essentially inviscid gas overlying the drop will be neglected. The drop profile
subtends an apparent contact angle, θa , with the underlying porous medium. The
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Figure 7. Shape evolution of a freezing water droplet on a cold, impermeable substrate.
Here, the substrate and initial droplet temperatures are −20 ◦C and 25 ◦C, respectively.

drop will therefore spread or dewet depending on whether θa is larger or smaller than
θe, the equilibrium contact angle. In the present work, θe is obtained via use of a
model proposed by Schwartz & Eley (1998), which involves an appropriately defined
disjoining pressure, Π , and a precursor layer thickness, h∗.

The porous medium is taken to be partially saturated with the same fluid as that
which constitutes the drop. The saturated and unsaturated regions in the medium
are separated by a front, which is assumed to be sharp. The medium is composed
of vertical pores of width 2b with a number density n per unit width. As the drop
spreads over the porous medium, fluid from the drop will penetrate through the pores.
The temperature of the medium, Tw , which is assumed to be constant, is sufficiently
lower than the melting point of the spreading fluid, Tm. Thus the spreading process is
accompanied by solidification within the pores, resulting, ultimately, in their blockage.
This, then, demarcates the end of the first stage of the spreading dynamics. Owing
to the solidification process, the permeability, K , and porosity, φ, of the medium
are both expected to be time-dependent. Closed-form expressions for K , φ, and the
average velocity within the medium, W , will be determined by examining the flow
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Figure 8. The flow geometry.

and accompanying heat transfer therein. These expressions will provide an input into
the equations governing the dynamics of the spreading process.

The second stage involves the continued spreading of the drop accompanied by the
development of an underlying layer of its own solid phase; the bottom surface of this
layer coincides with the top surface of the porous medium. This stage involves the close
approach of the solid–liquid and air–liquid interfaces, which will promote the liquid to
dewet its own solid phase. As mentioned above, this will occur if the apparent dynamic
contact angle is smaller than the equilibrium contact angle. This will arise naturally
owing to the inclusion of a disjoining pressure, Π , in the momentum conservation
equations, which includes both attractive and repulsive intermolecular interactions.

Because of the disparity of scales, which exists naturally within this problem, a
multi-scale approach is adopted. The scalings, which will be adopted in the porous
medium will be different from those used in the drop. We begin, however, by presenting
the equations governing the flow in both the drop and porous medium.

3.2. Governing equations: the drop

We use a rectangular coordinate system to describe the dynamics. The velocity field
in the drop is expressed by u = (u, 0, w), in which u and w correspond to the
velocity components in the horizontal and vertical directions, x and z, respectively.
As shown in figure 8, the top surface of the porous medium and the air–liquid
interface are located at z = 0 and z = h(x, t) + hs(x, t), respectively, while the sharp
front separating the saturated and the unsaturated regions of the porous medium is
located at z = −hp(x, t). Here, the interface between the liquid and solid phases in
the drop, where the temperature is T = Tm, is located at z = hs(x, t). Note that this
interface is assumed to be sharp and the possibility of formation of a ‘mushy zone’,
which can arise in situations involving ice-sheets (Greve 1997), for instance, is not
considered in the present work.

The equations governing the flow within the drop are therefore given by

ux + wz = 0, (3.1)

(p − Π)x = µuzz, (3.2)

pz = −ρg, (3.3)

which correspond to continuity and the x and z components of the Navier–Stokes
equations, respectively, where the subscript denotes partial differentiation unless stated
otherwise. Here, p and g denote the pressure in the fluid and the acceleration due to
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gravity, respectively. The disjoining pressure is given by

Π =
A

hn
∗

[(
h∗

h

)n

−
(

h∗

h + hs

)n

−
([

h∗

h

]m

−
[

h∗

h + hs

]m)]
, (3.4)

where the coefficient A is related to n, m and the equilibrium contact angle, θe, through
A = σθ2

e (n − 1)(m − 1)/2(n − m)h∗ assuming small θe; here, (n, m) = (2, 3).
These equations are complemented by boundary conditions, which are time-

dependent:

u = 0 at z = hs, (3.5)

which is the no-slip condition, while continuity of the normal component of the
velocity is

w = WH(t1 − t) + [1 − H (t1 − t)](1 − R)hst at z = hs, (3.6)

where H (t1 − t) is the Heaviside function. Here, W is the average speed of the flow in
the porous medium, which will be obtained via solution of the flow equations in this
medium and invoking Darcy’s law; t1 denotes the duration of the first stage of the
spreading process beyond which W = 0 owing to pore blockage. The condition on w

for t > t1 was obtained by demanding continuity of mass flux at hs in the lubrication
approximation, where R ≡ ρs/ρ, a ratio of the solid to melt densities. Note that the
thickness of the solidified layer is

hs = 0 for t � t1. (3.7)

The other boundary conditions correspond to continuity of the shear and normal
stress components at z = (h + hs)(x, t) and the kinematic boundary condition at this
interface; these, in the lubrication approximation, are respectively given by

uz = 0, (3.8)

p = −σ (h + hs)xx, (3.9)

ht + uhx = w, (3.10)

where σ denotes the surface tension of the air–liquid interface. Here, we have implicitly
assumed the absence of thermally induced Marangoni stresses. Equation (3.10) may
be re-expressed by

ht + Qx = WH(t1 − t) − [1 − H (t1 − t)] Rhst, (3.11)

where Q =
∫ h

hs
u dz is the volumetric flow rate. Additionally, we demand continuity

of pressure at z = 0 for t � t1.
The energy conservation equation for the fluid phase is given by

ρCp (Tt + uTx + wTz) = λ (Txx + Tzz), (3.12)

where T denotes temperature; note that we have implicitly assumed that viscous
heat generation is negligible. A similar energy conservation equation is used for
the solidified phase, in which the same quantities arise but are decorated with a
distinguishing ‘s’ subscript:

ρsCps
Tst = λs

(
Tsxx

+ Tszz

)
; (3.13)

here, ‘s’ denotes quantities in the solid phase.
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Figure 9. The adopted geometry for the porous medium.

Equation (3.12) is solved subject to the following boundary conditions in the
lubrication approximation

−λTz = α (T − Ta) at z = h + hs, (3.14)

T = TwH (t1 − t) + [1 − H (t1 − t)] Tm at z = hs. (3.15)

Equation (3.14) corresponds to a flux condition at the interface in which Ta denotes
the temperature of the surroundings and α is a heat transfer coefficient. Solutions of
(3.13) are obtained subject to

Ts = Tm at z = hs, (3.16)

and continuity of temperature at the base, assumed to be perfectly conducting:

Ts = Tw at z = 0. (3.17)

We have also performed an energy balance at z = hs , which, in the lubrication
approximation, yields

hst =
λs

ρs�Hm

(
Tsz

− LTz

)
, (3.18)

where continuity of mass flux at z = hs was also used and L ≡ λ/λs . This balance
reflects the fact that the latent heat of fusion, �Hm, released during the solidification
process, is conducted away from z = hs in the solidified and molten phases. Thus,
specification of the temperature field in both phases yields an evolution equation for
hs . We turn now to the equations in the porous medium.

3.3. Governing equations: porous medium

We assume that the pores in the porous medium are long and thin (see figure 9) so
that the flow is governed by the following equations

ûx̂ + ŵẑ = 0, (3.19)

p̂ẑ = −ρg + µŵx̂x̂, (3.20)

p̂x̂ = 0, (3.21)
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where û, ŵ and p̂ denote the horizontal and vertical components of the velocity field,
and the pressure within the pores, respectively. The flow through these pores over the
region 0 � ẑ � −hp is taken to be of the Poiseuille type driven by a pressure gradient
equal to

[
p̂(ẑ = 0) − p̂(ẑ = −hp)

]
/hp , where p̂(ẑ = −hp) is a capillary pore pressure,

given by

p̂(ẑ = −hp) = − 2σ

(b − x̂m)
, (3.22)

where x̂ = x̂m(t) denotes the interface between the solidified and fluid phases within
the porous medium.

Equation (3.20) is solved subject to the following symmetry and no-slip conditions,
respectively, given by

ŵx̂ = 0 at x̂ = b, (3.23)

ŵ = 0 at x̂ = x̂m(t). (3.24)

Note that the no-slip condition was applied at x̂ = x̂m(t). Also, continuity of mass
flux at x̂ = x̂m(t) yields

û = (1 − R) ˙̂xm. (3.25)

The energy conservation equation for the fluid phase in the porous medium is given
by

ρCp(T̂t̂ + ûT̂x̂ + ŵT̂ẑ) = λ(T̂x̂x̂ + T̂ẑẑ), (3.26)

while that for the solidified phase in the region 0 � x̂ � x̂m is similar except for the
distinguishing ‘s’ subscript:

ρsCps
T̂st̂

= λs(T̂sx̂x̂
+ T̂sẑẑ

). (3.27)

In (3.26) and (3.27), T̂ and T̂s denote the temperatures in the fluid and solidified
phases, respectively, in the porous medium.

Equation (3.26) is solved subject to

T̂x = 0 at x̂ = b, (3.28)

T̂ = Tm at x̂ = x̂m. (3.29)

The temperature of the solidified phase, T̂s , satisfies the following boundary conditions

T̂s = Tw at x̂ = 0, (3.30)

T̂s = Tm at x̂ = x̂m. (3.31)

An energy balance at x̂ = x̂m(t) is also performed which yields

˙̂xm =
λs

ρs�Hm

(
T̂sx

− LT̂x

)
, (3.32)

where we have also used (3.25). Knowledge of T̂ and T̂s allows the explicit determi-
nation of x̂m(t). Finally, the dynamics of the front hp are governed by

φhpt
= −W, (3.33)

where φ is the porosity of the porous medium.

3.4. Scaling

The governing equations and boundary conditions within the drop are rendered
dimensionless by using the following scalings:

x = a0x̃, (z, h, hs) = h0(z̃, h̃, h̃s), (u, w) = U(ũ, εw̃),
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(p, Π) = P(p̃, Π̃), t = (a0/U)̃t, T = Tw + (Tm − Tw)T̃ , (3.34)

in which P and U correspond to the characteristic pressure and velocity scalings in
the drop, respectively:

P ≡ σh0

a2
0

, U ≡ σh3
0

µa3
0

. (3.35)

Here, the quantities with a tilde are dimensionless. Substitution of these scalings into
the governing equations yields (after suppression of the tilde)

(p − Π)x = uzz, (3.36)

pz = −B, (3.37)

p = −(h + hs)xx at z = h + hs, (3.38)

εPe(Tt + uTx + wTz) = Tzz + O(ε2), (3.39)

εPesTst = Tszz + O(ε2), (3.40)

Tz = −Bs(T − Θa) at z = h + hs, (3.41)

T = 1 − H (t1 − t) at z = hs, (3.42)

Ts = 1 at z = hs, (3.43)

Ts = 0 at z = 0, (3.44)

hst =
Tsz − LTz

S
at z = hs. (3.45)

Equations (3.1), (3.5)–(3.8) and (3.10) remain unaltered. The dimensionless disjoining
pressure appearing in (3.36) is given by

Π = A
[(

h∗

h

)n

−
(

h∗

h + hs

)n

−
([

h∗

h

]m

−
[

h∗

h + hs

]m)]
, (3.46)

where A = a2
0A/(σh0) = 4/h∗ (Schwartz & Eley 1998; Alleborn & Raszillier 2004)

provides a dimensionless measure of the relative significance of disjoining pressure
effects. In (3.36)–(3.42), the Bond number is given by B ≡ ρga2

0/σ and the Péclet
number in the fluid (solidified) phase is expressed by Pe ≡ ρCpUh0/λ (Pes ≡
ρsCps

Uh0/λs). The parameter Bs ≡ αh0/λ is a surface Nusselt/Biot number while

S ≡ ρs�Hmh2
0U/(a0λs(Tm − Tw)) is the Stefan number, which is a ratio between the

time scales of energy release and conduction. Finally, Θa ≡ (Ta − Tw)/(Tm − Tw) is a
dimensionless air temperature.

In the porous medium, the scalings adopted for space, time, the velocity field and
pressure are different from those in the drop:

(x̂, x̂m) = b˜̂x, ẑ = l˜̂z, (û, ŵ) = W(ε̂ ˜̂u, ˜̂w), p̂ =

(
µWl

b2

)
˜̂p, t̂ =

(
b

U

)
t̃ , (3.47)

where ε̂ ≡ b/l � 1 is the aspect ratio of the pore in which l provides a measure of
the pore length. The temperature scaling remains unaltered from (3.34) and the tilde
decoration is dropped hereinafter. These scalings reflect the fact that the flow in the
porous medium is driven by capillarity and resisted by viscous retardation.

The relevant dimensionless equations in the porous medium are then given by

p̂ẑ = −B̂ + ŵx̂x̂ , (3.48)
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ŵx̂ = 0 at x̂ = 1, (3.49)

ŵ = 0 at x̂ = δ, (3.50)

ε̂P̂e(T̂t̂ + ûT̂x̂ + ŵT̂ẑ) = T̂x̂x̂ , (3.51)

ε̂P̂es T̂st̂
= T̂sx̂x̂

, (3.52)

T̂x̂ = 0 at x̂ = 1, (3.53)

T̂ = 1 at x̂ = δ, (3.54)

T̂s = 1 at x̂ = δ, (3.55)

T̂s = 0 at x̂ = 0, (3.56)

δ̇ =
T̂sx

− LT̂x

Ŝ
, (3.57)

φhpt̂
= −W. (3.58)

Here, the Bond number in the porous medium is given by B̂ ≡ ρgbl/σ , δ = x̂m/b

is the dimensionless location of the solidifying front, P̂e ≡ ρCpWb/λ and P̂es ≡
ρsCps

Wb/λs are Péclet numbers in the fluid and solidifying phases, respectively, while

the Stefan number in the porous medium is given by Ŝ ≡ ρsb
2W�Hm/ (λs(Tm − Tw)l).

3.5. Evolution equations

In this section, we derive the evolution equations which govern the dynamics of the
drop at the different stages of the flow. Integration of (3.37) and application of (3.38)
gives rise to the following pressure field

p = −(h + hs)xx + B(h + hs − z). (3.59)

Since px is independent of z, integration of (3.36) and application of (3.5) and (3.8)
yields

u = 1
2
px(z − hs)[z − (hs + 2h)]. (3.60)

In the case, (Pe, Pes) � 1, (3.39) and (3.40) simply become

Tzz = 0, Tszz = 0. (3.61)

Thus, integration of these equations and application of (3.41)–(3.44) yields the
following temperature distributions in the fluid and solid phases within the drop:

T = 1 +
Bs(θa − 1)(z − b)

1 + Bsh
, (3.62)

Ts =
z

b
. (3.63)

Substitution of (3.62) and (3.63) into (3.45) then gives a dimensionless evolution
equation for hs:

hst =
1

S

[
1

hs

− LBs(Θa − 1)

1 + Bsh

]
. (3.64)

In order to derive an evolution equation for h, W must be specified. Assuming that
(P̂e, P̂es) � 1, then

T̂ẑẑ = 0, T̂sẑẑ
= 0. (3.65)
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Integration of these equations and application of (3.53)–(3.56) yields

T̂ = 1, T̂s =
x̂

δ
. (3.66)

Substitution of (3.66) into (3.57) then yields 1/δ = Ŝδ̇, whence

δ =

(
2t̂

Ŝ

)1/2

. (3.67)

This indicates that the thickness of the solid layer in a pore will grow as t1/2.
In order to obtain an expression for ŵ, (3.48) is integrated twice and (3.49) and

(3.50) are applied:

ŵ =
(x̂ − δ)(x̂ + δ − 2)

2

[
p̂(ẑ = 0) + 2/(1 − δ)

hp

+ B̂
]
. (3.68)

An expression for W can then be obtained from (3.68) as follows

W =
n

2

∫ 2

0

ŵ dx̂

= −n

(
1

3
+

δ2

2
− δ

)(
p(z = 0) + 2/(1 − δ)

hp

+ B̂
)

. (3.69)

This equation must be re-dimensionalized and then re-scaled using the scalings
relevant in the drop region:

W = −K

[
1

3
+

t

S
−

(
2t

S

)1/2][
B

(
1 +

h + hs

hp

)
−

(h + hs)xx − C
[
1 − (2t/S)1/2

]−1

hp

]
,

(3.70)

where we have used continuity of pressure at z = 0 so that p(z = 0) = B(h + hs) −
(h + hs)xx . In (3.70), K ≡ nb2a2

0/h4
0 is a dimensionless measure of the permeability,

which in this case is time-dependent, and C ≡ 2a2
0/(bh0) which controls the relative

significance of capillary suction through the pores.
From (3.33) and (3.70), an evolution equation for hp can be obtained:

hpt
= − W

[1 − (2t/S)] φ0

, (3.71)

where, as a result of the solidification process, the porosity is time-dependent and φ0

is the initial porosity of the medium.
An evolution equation governing the dynamics of h(x, t) can finally be obtained

following the substitution of (3.60) and (3.70) into (3.11):

ht −
[
h3

3
(B(h + hs) − (h + hs)xx − Π)x]x = WH (t1 − t) − [1 − H (t1 − t)

]
Rhst

, (3.72)

where t = t1 when W = 0. Thus, the end of the first stage coincides with

t = t1 = 0.09S, (3.73)

which is a function of the Stefan number only; here, we have made use of the minus
sign in the root of the prefactor in (3.70). Inspection of (3.73), the suction term
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Parameter Definition Estimate

Rescaled Hamaker constant A ≡ a2
0A

σh0
= 4/h∗ 80–800

Bond number B ≡ ρga2
0

σ
0–10

Biot number Bs ≡ αh0
λ

0.1–10

Suction number C ≡ 2a2
0

bh0
103–106

Permeability parameter K ≡ nb2a2
0

h4
0

0–10−5

Thermal conductivity ratio L ≡ λ
λs

10−2–100

Density ratio R ≡ ρs

ρ
0.8–2

Stefan number S ≡ ρs�Hmσh5
0

µa4
0λs (Tm−Tw )

5–105

Dimensionless air temperature θa ≡ Ta−Tw

Tm−Tw
0–10

Table 1. Dimensionless parameters appearing in (3.64), (3.70), (3.71) and (3.72) and order of
magnitude estimates of their values.

of (3.70), and (3.71) reveals that no singular behaviour occurs, that is, the porosity
remains finite as W approaches zero.

The dynamics of the spreading process are governed by (3.64), (3.71) and (3.72),
which are coupled by (3.70). Note that in the limit R → 0 and S → ∞, the equations
studied by Alleborn & Raszillier (2004) that govern droplet spreading and imbibition
on a porous substrate are recovered. Furthermore, in the additional limit of K → 0,
the case of droplet spreading by capillarity and gravity on an impermeable substrate
is recovered (Schwartz & Eley 1998).

The physical problem described by (3.64), (3.71) and (3.72) is parametrically rich.
We give the various parameters appearing in these equations in table 1, together
with order of magnitude estimates of their values before turning our attention to the
numerical solutions, which are discussed next.

4. Numerical solutions
In this section, we present a discussion of our results. We begin by providing details

of the numerical procedure employed to carry out the computations. We then present
the results of a full parametric study of the spreading and solidification process.

4.1. Numerical procedure

The routine used to perform the computations in the present work is EPDCOL
(Keast & Muir 1991). This procedure employs finite-element collocation to discretize
the spatial derivatives and uses Gear’s method to advance the solutions in time.
EPDCOL is a highly reliable routine, which has been used to compute solutions to
interface equations in a variety of settings (see, for instance, Warner, Craster & Matar
2002a, b).
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Numerical solutions of (3.64), (3.71) and (3.72) are obtained over a spatial domain
of length up to two dimensionless units, 0 � x � 2, using up to 1000 grid points.
Symmetry about the drop axis was assumed and convergence was achieved upon
refinement of the grid size. The solutions were obtained starting from the following
initial conditions

h(x, 0) = max(A1 − A2x
2 + h∗, h∗), (4.1)

(hs, hp)(x, 0) = 0.01. (4.2)

The solutions presented in this section have A1 = 2, A2 = 10 and h∗ = 0.005.
Equation (4.1) represents the physical situation in which a paraboloidal mound of
liquid is deposited on a solid substrate, which has been pre-wetted with a very thin
precursor layer of thickness h∗. Equation (4.2) represents the initial values of the solid
and saturation front in the porous medium. Their specification is necessary in order to
circumvent difficulties related to singularities in (3.64) and (3.71), which are associated
with having (hs, hp)(x, 0) = 0. We have, however, ensured that the numerical solutions
are very weakly dependent on the exact value of (hs, hp)(x, 0).

In order to prevent imbibition and solidification of the precursor layer, which is
essential for modelling expediency, we introduce a thickness-dependent permeability
parameter and Stefan number, K(x) = FK and S(x) = FS, in which F is expressed
by (Schwartz & Eley 1998; Alleborn & Raszillier 2004)

F = 1
2
(1 + tanh[103(h − 1.2h∗)]). (4.3)

The function F reduces the value of both K and S to zero as h → h∗ and recovers
their original values for h � h∗. We have ensured that the numerical solutions are
essentially independent of the exact form of F, although, as will be shown in § 5, the
time scales for the spreading process will have to be adjusted post facto to achieve
agreement between theory and experiment.

We have also examined the dependence of the numerical solutions on the value
of the dimensionless precursor thickness, h∗. In figure 10, we show the temporal
evolution of the maximal film thickness for the case of isothermal spreading of a drop
on an impermeable substrate; this is characterized by B = 1, K = 0 and S → ∞.
Inspection of the solutions shown in this plot over four decades in time reveals
that they become essentially independent of the value of h∗ with decreasing h∗; the
solutions for h∗ = 0.01 and h∗ = 0.005 are very similar. The remaining plots shown
in the present work have all been generated using h∗ = 0.005 which is also the value
used in the majority of the computations of Schwartz & Eley (1998) and Alleborn
& Raszillier (2004). We turn our attention now to the discussion of our numerical
results.

4.2. Numerical results

We begin the discussion of our results by examining the spreading of a droplet over
a permeable substrate at high Stefan numbers. In figure 11, we show the spatio-
temporal development at early times of the droplet height together with that of
the saturation and solidification fronts B = Bs = L = R = 1, C = 104, K =
5 × 10−6, S = 105, Θa = 0.5 and φ0 = 0.35. This choice of parameters dictates
that, t1, the end of the first stage of the spreading process, is t1 = 9000, which
implies that solidification is not expected to affect the spreading process; this is the
case studied by Alleborn & Raszillier (2004). In figure 12, we show the late-time
dynamics of the spreading process for the same parameters as in figure 11, while
in figure 13 we plot the temporal evolution of the maximal liquid drop thickness,
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Figure 10. The effect of altering the dimensionless precursor film thickness, h∗, on the
temporal evolution of the maximal film thickness for the case of droplet spreading on an
impermeable substrate in the absence of solidification. The parameter values are B = 1, K = 0
and S → ∞.
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Figure 11. Evolution of the droplet thickness (dot-dashed lines), saturation (dotted lines) and
solid (solid lines) fronts at high Stefan numbers: early-time dynamics. The parameter values
are B = Bs = L = R = 1, C = 104, K = 5 × 10−6, S = 105, Θa = 0.5 and φ0 = 0.35.
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Figure 12. Evolution of the droplet thickness (dot-dashed lines), saturation (dotted lines) and
solid (solid lines) fronts at high Stefan numbers: late-time dynamics. The parameter values are
the same as in figure 11.

hmax , and maximal solid front, hsmax
, the horizontal extent of the liquid drop, xmax , the

ratio of the apparent to equilibrium contact angles (taken to equal hmax/xmax), and
the maximal vertical extent of the saturation front, hpmax

.
The droplet is driven to spread under the combined action of gravity and capillarity

at very early times. Close inspection of figures 11(a) and 11(b) shows that very little
imbibition into the porous medium has occurred, which is also evident from figure 13.
At t = 0.1 (see figure 11c) sufficient imbibition has taken place, which gives rise to
a well defined saturation front. This front grows deeper into the porous medium, as
shown in figures 11(d) to 11(f ), and the continued imbibition into the permeable
substrate accelerates the flattening of the droplet (see also figure 13a).

In figure 12, we show the development of h, hp and hs at later times for the same
parameter values as those used to generate figure 11. In figure 12(a) it is clearly seen
that the magnitude of the droplet apparent contact angle has diminished considerably
so that, as shown in figure 12(b), the droplet begins to dewet the porous substrate.
This is because the apparent contact angle has decreased to a lower value than the
equilibrium contact angle. This also becomes clear upon inspection of figures 13(b)
and 13(c); the latter panel shows that xmax has reached a maximal value before
decreasing with increasing time. This dewetting process continues, accompanied by
continued imbibition into the porous substrate, as depicted in figure 12(c–f ), which
shows that the saturated front has penetrated to a considerable depth within the
medium below the flow origin; the lateral extent of this front, however, has reached
its maximal value at a time which coincides approximately with the onset of the
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Figure 13. (a) Temporal evolution of the maximal liquid drop thickness, hmax , and maximal
solid front, hsmax

, (b) the horizontal extent of the liquid drop, xmax , (c) the ratio of the apparent
to equilibrium contact angles, and (d) the maximal vertical extent of the saturation front, hpmax

.
The parameter values are the same as in figures 11 and 12. The dot-dashed lines shown in (a),
(b) and (d) have slopes of −1/7, 1/7 and 1/2, respectively.

dewetting process. At the latest stages of the spreading, prior to the disappearance of
the droplet into the porous medium, the contact angle undergoes a very rapid decrease
to zero (see figure 12f and figure 13a,c). It is also worth noting that as, shown in
figure 13(a,b), our numerical predictions are in agreement with power-law scalings for
hmax and xmax , hmax ∼ t−1/7 and xmax ∼ t1/7, which are expected for capillary-driven
spreading of a two-dimensional droplet over an impermeable substrate (before the
onset of the imbibition-induced dewetting) (Ehrhard & Davis 1991). The numerical
results are also consistent with the scalings for hp based on the Washburn equation,
which predicts that hp ∼ t1/2 (see figure 13d). The results shown in figures 11 to
13 are similar to those reported by Alleborn & Raszillier (2004). Note that the
solidification process, which occurs within the porous medium has a very minor effect
on the dynamics, as expected, since the time scale over which the droplet has virtually
disappeared, t ≈ 130 is much smaller than t1.

Next we examine the spreading and imbibition processes at sufficiently low values of
the Stefan number so that the solidification process is expected to have a pronounced
effect on the dynamics. In figure 14, we show the spatio-temporal evolution of h, hp

and hs for 0 � t < t1, that is over the ‘first’ stage of the spreading, for the same
parameter values as those used to generate figures 11 and 12 except S = 25 for which
t1 = 2.25; figures 15 and 16, respectively, show the profiles for t > t1 and the temporal
evolution of hmax , hsmax

, xmax , θa/θe and hpmax
. Inspection of figure 14, shows that the

solutions in this case are qualitatively similar to those shown in figure 11: the droplet
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Figure 14. Evolution of the droplet thickness (dot-dashed lines), saturation (dotted lines)
and solid (solid lines) fronts at relatively low Stefan numbers: spreading and imbibition. The
parameter values are B = Bs = L = R = 1, C = 104, K = 5 × 10−6, S = 25, Θa = 0.5 and
φ0 = 0.35.

relaxes owing to capillary and gravitational forcing in addition to imbibition into the
porous medium. This is also reflected by the solutions shown in figure 16, which are
very similar to those shown in figure 13 at early times.

In figure 15, we show numerical solutions of (3.64), (3.71) and (3.72) for t > t1, for
which W = 0 owing to solidification within the pores, which causes the imbibition
process to be arrested and the thickness of the saturation front to reach its maximal
value; droplet solidification then takes place from below. Figure 15(a) shows the
liquid droplet lying atop a solidification front which has developed near the substrate.
As the solidification process continues, the size of the liquid droplet decreases and
this is accompanied by steepening of the droplet at the point of ‘contact’ with its
own solid phase (the so-called ‘tri-junction’) and an increase in the apparent contact
angle in that region (see figure 15b–d). This can also be seen upon inspection of
figure 16. In figure 16(a), the increase in hsmax

is clearly seen to coincide with the sharp
decrease of hmax , the maximal thickness of the liquid droplet. It also appears that at
the later stages of the solidification process, hsmax

∼ t1/2, which is expected to follow
from (3.64) when Bsh � 1 and Shst

∼ 1/hst
. In figure 16(b), it is seen that xmax also

undergoes a sharp decrease during the solidification stage as the spatial location of
the tri-junction shifts towards the flow origin. Evidence for droplet steepening can
also be seen in figure 16(c), which shows a marked increase in the ratio θa/θe during
solidification. The solidification culminates in the formation of a drop that exhibits
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Figure 15. Evolution of the droplet thickness (dot-dashed lines), saturation (dotted lines) and
solid (solid lines) fronts at relatively low Stefan numbers: solidification. The parameter values
are the same as in figure 14. The inset in figure (c) shows an enlarged view of the ‘tri-junction’;
here, a very thin precursor extends out from both sides of the drop to cover the underlying
solidified phase.

a point of inflection and cusp-like structure at its apex. Similar structures have been
reported in the work of Anderson et al. (1996). Note that hpmax

∼ t1/2 and reaches a
maximal value prior to the onset of solidification beyond which it remains constant,
as shown in figure 16(d).

Next, we discuss the results of a parametric study, in which we assess the effect of
altering S, Bs , L, R and Θa (see table 1 for definitions) on the spreading dynamics;
the values of B, K , C and φ0 are kept constant. We begin by studying the effect
of altering S on the temporal evolution of the maximal liquid drop thickness, hmax ,
maximal solid front, hsmax

, the horizontal extent of the liquid drop, xmax , the ratio
of the apparent to equilibrium contact angles, θa/θe, and the maximal extent of the
saturation front, hpmax

. This is shown in figure 17 for S = 5, 25, 105; the rest of the
parameters are the same as in figure 14. This plot shows that decreasing S, which
corresponds to a decrease in the time scale associated with the release of the latent
heat of fusion to that related to conduction, lowers the onset time of solidification
as shown in figure 17(a, b). The increase in the ratio θa/θe and the arrest of the
imbibition process due to pore blockage also occurs earlier with decreasing S; this
is shown in figures 17(c) and 17(d). In figure 18, we show the ‘final’ shapes of the
solidified droplets for S = 5, 25, 105. Here, it is seen that decreasing the value of
S results in imbibition fronts of smaller thickness and more well-rounded droplet
profiles with slightly less pronounced inflection points. The reason for the latter trend
is the following. If the solidification time scales are large in relation to the spreading
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Figure 16. (a) Temporal evolution of the maximal liquid drop thickness, hmax , and maximal
solid front, hsmax

(b) the horizontal extent of the liquid drop, xmax (c), the ratio of the apparent
to equilibrium contact angles, and (d) the maximal vertical extent of the saturation front,
hpmax

. The parameter values are the same as in figures 14 and 15. The dot-dashed lines shown
in (a) have slopes of −1/7 and 1/2, while those in (b) and (d) have slopes of 1/7 and 1/2,
respectively.

time scales (that is, for relatively large S) then basal solidification will occur at a time
during which the contact angle is smaller than that at equilibrium. The combined
effects of dewetting and solidification then give rise to the shapes shown in figure
6. For small S values, on the other hand, solidification occurs sufficiently early for
the contact angle to be larger than its equilibrium value. Then it is possible to have
spreading (rather than dewetting) accompanied by basal solidification, which gives
rise to more well-rounded droplet shapes.

In figure 19, we show the effect of varying the surface Biot number, Bs , on hmax , hsmax

and θa/θe with Bs = 0.1, 1 and 10 and the rest of the parameters remaining unchanged
from figure 17. Note that in figure 19 we do not show plots of the temporal evolution
of hpmax

, which, in each case, are identical to those shown in figure 17 for Bs = 1.
Inspection of the results shown in figure 19 reveals that increasing Bs accelerates the
solidification process. This is to be expected since increasing Bs reflects an increase
in the rate of heat transfer from the hot droplet. Also, as shown in figure 19(d),
the final shapes of the solidified droplets become more well-rounded with decreasing
Bs although it is noted that these shapes do not appear to be highly sensitive to
variations in Bs over two orders of magnitude. One can envisage, however, that Bs

may become a critical parameter if interfacial crust formation had been taken into
account in the present model.
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Figure 17. (a) The effect of varying the Stefan number, S, on the temporal variation of the
maximal liquid drop thickness, hmax , and maximal solid front, hsmax

, (b) the horizontal extent
of the liquid drop, xmax (c) the ratio of the apparent to equilibrium contact angles, and (d) the
maximal extent of the saturation front, hpmax

. Here, S = 105, 25 and 5 are shown using dotted,
dot-dashed and solid lines, respectively, and the rest of the parameter values remain unaltered
from figure 14.
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Figure 18. The effect of varying the Stefan number, S, on the final shape of the solidified
droplet and saturation front profile for S = 5, 25, 105 shown at t = 3.6, 16.15, 130, respectively.
The rest of the parameter values remain unaltered from figure 14.
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Figure 19. (a) The effect of varying the Biot number, Bs , on the temporal variation of the
maximal liquid drop thickness, hmax , and maximal solid front, hsmax

, (b) the horizontal extent
of the liquid drop, xmax , (c), the ratio of the apparent to equilibrium contact angles, and (d)
the final shapes of the solidified drops and saturation front profiles. Here, Bs = 0.1, 1 and 10
are shown using dotted, dot-dashed and solid lines, respectively, and the rest of the parameter
values remain unaltered from figure 17. The profiles in (d) are shown at t = 19.76, 16.15, 10.1
for Bs = 0.1, 1, 10, respectively; the curves associated with Bs = 1 and Bs = 10 shown in
(d) are virtually indistinguishable.

The effect of varying the ratio of thermal conductivities, L = λ/λs , on the dynamics
of the spreading process was also studied. This is shown in figure 20 for L = 0.01,
1 and 100 and the same parameter values as in figure 17. Increasing L, which
corresponds to a relative increase of the thermal conductivity of the liquid phase, λ,
over that of the solid phase, λs , promotes droplet solidification. This is explained by
the fact that smaller temperature gradients are required for the transfer of energy
from the hot droplet to the cooler base as λ increases. Note that apart from affecting
the onset time for droplet solidification, variation of Bs and L have only a minor
effect on the overall shape of the θa/θe curves. Increasing L, however, leads to the
formation of final shapes of the solidified droplets with more pronounced cusp-like
features at the apex (see figure 20d).

Next we examine the parametric dependence of the spreading dynamics on the
ratio of the densities, R = ρs/ρ. In figure 21, we show the temporal evolution of hmax ,
hsmax

, xmax and θa/θe for R = 0.8, 1 and 2 and the same parameters as in figure 17.
Decreasing R, that is increasing the value of ρ in relation to ρs , leads to a delay in
the onset of solidification and a relative increase in the ratio of θa/θe at intermediate
times; this corresponds to steepening of the droplet at the tri-junction. This steepening
is due to the decrease in the volume of the denser liquid drop, which is dictated by
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Figure 20. (a) The effect of varying the ratio of thermal conductivities, L, on the temporal
variation of the maximal liquid drop thickness, hmax , and maximal solid front, hsmax

, (b) the
horizontal extent of the liquid drop, xmax , (c), the ratio of the apparent to equilibrium contact
angles, and (d) the final shapes of the solidified drops and saturation front profiles. Here,
L = 0.01, 1 and 100 are shown using dotted, dot-dashed and solid lines, respectively, and the
rest of the parameter values remain unaltered from figure 17. The profiles in (d) are shown at
t = 20.36, 16.15, 2.93 for L = 0.01, 1, 100, respectively.

mass conservation considerations. The delay in the onset of solidification, on the
other hand, may be interpreted as being due to an effective increase of the Stefan
number, which has the effect of decelerating solidification. Note that, as shown in
figure 17(d), the ratio R has a marked effect on the final shapes of the solidified
droplets: increasing R leads to larger droplets with pronounced cusp-like features,
while decreasing R gives rise to smaller, more well-rounded droplet shapes.

Finally, we have examined the effect of varying the dimensionless air temperature
on the dynamics of the spreading process for Θa = 0, 0.5 and 1 and the same
parameters as in figure 17. The results (which are not shown, but are structurally very
similar to those illustrated in figure 19) indicate that increasing the value of Θa from
zero, the case for which the substrate and surrounding air are in thermal equilibrium,
delays the onset of solidification process. This is because an increase in Ta with Tw

and Tm remaining fixed decreases the rate of heat transfer from the hot droplet. In
fact, increasing Θa has the same qualitative effect as decreasing Bs and L, as shown
in figures 19 and 20. Variation of Θa also has a minor effect on the characteristics
of the θa/θe curves and the final shapes of the solidified droplets for the parameter
values investigated in the present work. We turn our attention now to the comparison
between our modelling predictions and experimental data.
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Figure 21. The effect of varying the ratio of solid to liquid densities, R, on the temporal
variation of the maximal liquid drop thickness, hmax , and maximal solid front, hsmax

, (a), the
horizontal extent of the liquid drop, xmax , (b), the ratio of the apparent to equilibrium contact
angles, (c), and the final shapes of the solidified drops and saturation front profiles, (d). Here,
R = 0.8, 1 and 2 are shown using dotted, dot-dashed and solid lines, respectively, and the
rest of the parameter values remain unaltered from figure 17. The profiles in (d) are shown at
t = 22.03, 16.15, 5.54 for R = 0.85, 1, 2, respectively.

5. Comparison between theory and experiment, and model limitations
Here, we attempt to validate our model by comparing its predictions with

experimental data. We show in figure 22 a comparison of the predicted and measured
variation of the dimensionless droplet base diameter with time. (Here, this quantity
represents the ratio of the droplet diameter at a given time to that at the onset of the
spreading process.) The experimental data chosen for this comparison correspond to
the curves labelled ‘1’–‘4’ in figure 5. The initial droplet volume and radius in each
case are approximately equal to 15 mm3 and 1.92 mm, respectively. The characteristic
height and length scales were estimated to be h0 = 0.93 mm and a0 = 4.47 mm
from the equilibrium shape of a PEG1500 droplet spreading on a nearly impermeable
substrate. This was made from the same material (sodium carbonate) as the tablets
discussed in the previous section, but using a higher pressure (12 Mt) to compress the
particles that had diameters approximately equal to 75 µm. Using these values, curves
1–4 are then characterized by the following dimensionless parameters B = 4.81,
Bs = 0.06, C = 1712, K = 6.39 × 10−6, L = 1.04, R = 1.08, Θa = 0 and φ0 = 0.35.
Moreover, curves 1–4 are distinguished by different Stefan numbers, which are equal
to S = 21.7, 65.2, 97.5 and ∞, respectively; the latter value corresponds to the case in
which no solidification is possible since Ts > Tm. The initial condition for the droplet,
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Figure 22. Comparison of modelling predictions (solid lines) with experimentally obtained
data (circles) for the temporal evolution of the basal radius.

which is necessary for the numerical computations corresponds to a paraboloidal
shape characterized by A1 = 1.7 and A2 = −9 in (3.1), which has the same volume
as that of the droplets used in the experiments; (3.2) was used as an initial condition
for hs and hp and h∗ = 0.005 was fixed in all of the computations.

Inspection of figure 22 shows that the agreement between the model predictions
and experimental data is reasonably good. The dynamics are predicted well during the
earlier stages of the spreading process, but the maximal dimensionless basal diameter
is over-predicted by the model for curves 1 and 2 in which solidification occurs. It
should be noted, however, that because of our use of the precursor-layer model with
h∗ = 0.005, the spreading rate was over-predicted. Thus in order to correct for this, we
have multiplied our time scales by a factor of 2.5, which is in line with the value of 2.8
that was previously determined by Schwartz & Eley (1998) following the reduction
of h∗ by two orders of magnitude.

It is also noteworthy that the experimental results shown in figure 7 are reminiscent
of those discussed in § 4 (see, for instance, figures 18, 19d and 20d although it should
be noted that these results were generated for the case of spreading on a permeable
substrate). Note also that as shown in figure 21, the ratio of solid to fluid densities
has a significant effect on the final shapes of solidifying droplets. In fact, the final
shape of the solidified droplet shown in figure 7(f ), which is characterized by a ratio
approximately equal to 0.9, is very similar to those shown in figure 21(d) for a ratio
of 0.8 and 1.

In view of these results, it is important to highlight the shortcomings and limitations
of the model adopted in the present work. (i) A precursor layer model was adopted
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in order to relieve potential numerical problems associated with the contact line
singularity and the specification of a slip law in that region in order to advance
the droplet. This introduced an extra parameter into the problem, namely the
dimensionless precursor layer thickness, h∗. A similar approach to the one adopted
here, however, has previously been followed in the literature by Schwartz & Eley
(1998) and Alleborn & Raszillier (2004). These studies have shown that the calculated
flow profiles become essentially independent of h∗ for sufficiently small values of h∗.
This was also demonstrated in the present paper in figure 10; however, adjustments
to the time scales became necessary when establishing a direct comparison between
experimental observations and modelling predictions.

(ii) The problem formulation associated with the porous medium assumed the
substrate to be of uniform porosity, being composed of pores of uniform width
and length, which, of course, represents an idealization. Moreover, the flow within
the porous medium was taken to be one-dimensional which is another idealization.
Future work should perhaps remove these from the mathematical description of the
problem in order to generate more sophisticated predictive models.

(iii) The heat transfer problem solved within the drop and the substrate had a
number of limitations. These included the assumption that the porous medium is
infinitely conducting and that its temperature remained constant throughout all the
stages of the spreading, imbibition and solidification processes. The limitations also
included the assumption that the Péclet numbers within the solid and melt phases
are very small. In certain situations such as lava flows (Balmforth & Craster 2000;
Balmforth et al. 2004), the Péclet numbers may be relatively large. Future models
should therefore also examine the situation in which thermal convection is important,
which may lead to even more interesting dynamics.

(iv) The physical properties of both the solid and melt phases, such as the
densities, melt viscosity, thermal conductivities and surface tension, have all been
assumed to be temperature-independent. These effects may be important, particularly
those associated with temperature-dependent viscosities, as noted by previous authors
(Sakimoto & Zuber 1995; Bercovici & Lin 1996; Balmforth & Craster 2000; Bunk &
King 2003), and should therefore be incorporated into future models.

(v) The present model assumes that the droplet undergoes basal solidification
at the beginning of the second stage of the dynamics; this, of course, precludes
the possibility of simultaneous crust formation (and ‘buckling’ shown in figures 3
and 4 in § 2) via cooling of the air–melt interface. Accounting for this potential
feature of the dynamics would give rise to a more complicated model owing to
the necessary presence of an extra interface corresponding to the upper solid–melt
interface. Nevertheless, this feature must be incorporated into future models in order
to provide more accurate predictions of the dynamics and faithful representation of
physically realizable situations.

Note, finally, that the results presented are for the case of a two-dimensional rather
than an axisymmetric droplet, which would perhaps have been more appropriate from
a physical standpoint.

6. Conclusions
We have investigated the dynamics of spreading, imbibition and solidification of a

two-dimensional droplet bounded from above by air on a porous substrate composed
of an array of pores having constant width. Lubrication theory was used to derive
evolution equations for the droplet thickness and heights of the saturation front in
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the porous medium and of the sharp solid–melt interface within the drop by assuming
the Péclet numbers within the drop and porous medium to be small; a precursor layer
and a disjoining pressure model were used to relieve the contact line singularity at the
edge of the droplet. The evolution equations are parameterized by a relatively large
number of dimensionless groups, reflecting the relative importance of permeability,
capillary suction in the porous medium, heat transfer and solidification, in addition
to gravity, capillarity at the droplet free surface, and intermolecular forces. Numerical
solutions of the model equations were obtained using a reliable numerical routine
based on the finite-element method over a wide range of parameters. The spreading
dynamics of PEG melts on porous sodium carbonate substrates were also investigated
experimentally using a commercially available droplet-shape analyser.

The results of our numerical parametric study have indicated that the dynamics
depend critically on the time scales which characterize spreading, imbibition and
solidification. For a given value of the permeability parameter, spreading of the
droplet and its imbibition into the porous medium is accompanied by solidification
within the medium. This solidification eventually leads to blockage of the pores on
a time scale governed by the Stefan number, S, a ratio of the rates of release of the
heat of fusion and conduction. Following the end of this stage of the dynamics, the
droplet undergoes basal solidification, which, depending on the value of S and other
parameters such as the ratio of solid to liquid densities, thermal conductivies, and
surface Biot number, can result in final solidified droplet shapes that exhibit cusp-like
features at the droplet apex. A comparison of modelling predictions with experimental
observations, performed in terms of the temporal evolution of the droplet basal radius,
revealed reasonably good agreement and highlighted the limitations of the present
model.

Future work will focus on the derivation of more sophisticated models that
are valid for large Péclet numbers and which do not preclude simultaneous basal
solidification and crust-formation at the air–liquid interface.
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